Plasma membrane Ca2+-ATPase in excitable and nonexcitable cells.

نویسندگان

  • L Zylińska
  • M Soszyński
چکیده

There is a significant number of data confirming that the maintenance of calcium homeostasis in a living cell is a complex, multiregulated process. Calcium efflux from excitable cells (i.e., neurons) occurs through two main systems--an electrochemically driven Na+/Ca2+ exchanger with a low Ca2+ affinity (K0.5 = 10-15 microM), and a plasmalemmal, specific Ca2+-ATPase, with a high Ca2+ affinity (K0.5 < 0.5-1 microM), whereas in nonexcitable cells (i.e., erythrocytes) the calcium pump is the sole system responsible for the extrusion of calcium ions. The plasma membrane Ca2+-ATPase (PMCA) is a ubiquitously expressed protein, and more than 26 transcripts of four PMCA genes are distributed in a tissue specific manner. Differences in the structure and localization of PMCA variants are thought to correlate with specific regulatory properties and may have consequences for proper cellular Ca2+ signaling. The regulatory mechanisms of calcium pump activity have been studied extensively, resulting in a new view of the functioning of this important molecule in the membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to Purkinje neuron synapse.

Plasma membrane Ca2+ ATPase 2 (PMCA2) is a fast, highly effective mechanism to control resting cytosolic Ca2+ and Ca2+ excursions in neurons and other excitable cells. The strong expression of PMCA2 in the cerebellum and the cerebellar behavioral deficits presented by PMCA2-/- knock-out mice all point to its importance for cerebellar circuit dynamics. Here, we provide direct functional evidence...

متن کامل

The elemental principles of calcium signaling

Complexity of Intracellular Caz+ Signals Ca2+ is a ubiquitous intracellular signaling molecule controlling a wide array of cellular processes, including secretion, contraction, and cell proliferation (Berridge, 1993; Clapham, 1995). In resting cells, the intracellular Ca2+ concentration ([Cap+],) is maintained at approximately 1 O-l 00 nM, and during stimulation the average [Ca2+li can rise up ...

متن کامل

Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase

Voltage-gated ion channels generate action potentials in excitable cells and help set the resting membrane potential in nonexcitable cells like lymphocytes. It has been difficult to investigate what kinds of phospholipids interact with these membrane proteins in their native environments and what functional impacts such interactions create. This problem might be circumvented if we could modify ...

متن کامل

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

Thapsigargin inhibits Ca2+ entry into human neutrophil granulocytes.

The mechanism of Ca2+ entry after ligand binding to receptors on the surface of non-excitable cells is a current focus of interest. Considerable attention has been given to Ca2+ influx induced by emptying of intracellular pools. Thapsigargin, an inhibitor of microsomal Ca(2+)-ATPase, is an important tool in inducing store-regulated Ca2+ influx. In the present paper we show that, at concentratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2000